
MINISTRY OF EDUCATION AND SCIENTIFIC RESEARCH 

UNIVERSITY OF PETROŞANI 

FACULTY OF MECHANICAL AND ELECTRICAL ENGINEERING 

DEPARTMENT OF MECHANICAL, INDUSTRIAL AND TRANSPORT 

ENGINEERING 

  

 

 

 

NARCIS-IONEL REBEDEA, Eng. 

 

 

 

DOCTORAL THESIS 
 

ABSTRACT 

 

 

CONTRIBUTIONS TO THE STUDY OF RELIABILITY, 

MAINTAINABILITY AND AVAILABILITY OF NEW 

MINING TRANSPORTATION SYSTEMS 

 

 
 

 

 

 

 
                                                        SUPERVISOR  

                                                RADU SORIN-MIHAI, PhD, Univ. Prof., Eng. 

 

 

 

 

 

PETROŞANI, 2020 

 



2 

 

CONTENT 
 

INTRODUCTION  
 

CHAPTER I  GENERAL CHARACTERIZATION OF TECHNICAL SYSTEMS LIFE 

 1.1. Defining the life of a technical system 

 1.2. Defining reliability 

 1.3. Defining maintainability 

 1.4. Maintenance strategies 

 1.5. Defining availability 

 1.6. Intrinsic relation between reliability and maintainability 

 1.7. Conclusions 
  

CHAPTER II  RELIABILITY STUDY OF COMPLEX LOAD, HAUL AND DUMP 

                         MACHINES  

 2.1. General presentation of complex LHD machines 

 2.2. Evaluation of operational reliability of load and haul machine 

  2.2.1. General considerations on determining load and haul machines operational reliability  

  2.2.2. Determination of empirical function of failure distribution 

  2.2.3. Parameters estimation and testing distribution laws 

  2.2.4. Quantification of principal reliability indicators 

 2.3. Analysis of load and haul machine functionality 

 2.4. Establishing the optimum intervention moment on the load and haul machine 

 2.5. Study of functionality of load machine’s bucket manoeuvring hydraulic cylinders 

  2.5.1. General considerations 

  2.5.2. Quantification of operational reliability of hydraulic cylinders 

  2.5.3. Analysis of functionality of hydraulic cylinders  

 2.6. Study of functionality of hydraulic pumps in the load machine’s braking system  

  2.6.1. Quantification of operational reliability of hydraulic pumps 

  2.6.2. Analysis of hydraulic pump functionality  

 2.7. Estimation of mean life of brake system friction pads utilization 

  2.7.1. General considerations 

  2.7.2. Quantification of operational reliability of friction pads 

  2.7.3. Functionality of friction pads 

 2.8. Conclusions 
  

CHAPTER III  DATA BASE FOR THE RMA STUDY OF ROLLER BELT CONVEYERS  

 3.1. Defining the objective of RMA study 

 3.2. Primary data base for RMA study of roller belt conveyors 

 3.3. Processing and testing primary data 

 3.4. Distribution of failure of roller belt conveyors 

  3.4.1. Distribution of operative times for TB-1 belt conveyor 

  3.4.2. Distribution of operative times for TB-2 belt conveyor 

  3.4.3. Distribution of operative times for TB-3 belt conveyor 

  3.4.4. Distribution of operative times for TB-4 belt conveyor 

 3.5. Conclusions 
  

CHAPTER IV  STUDY OF AVAILABILITY OF ROLLER BELT CONVEYOR SYSTEMS 

 4.1. General characterization of a system’s availability 

 4.2. Evaluation of the reliability of roller belt conveyor systems 

  4.2.1. Evaluation of the reliability of TB-1 belt conveyor 

  4.2.2. Evaluation of the reliability of TB-2 belt conveyor 

  4.2.3. Evaluation of the reliability of TB-3 belt conveyor 



3 

 

 

INTRODUCTION 
 

In this paper, a complex reliability, maintainability and availability study is acknowledged as 

RMA study. The denomination comes from the initials of the three entities, which interpenetrate, 

Reliability, Maintainability, and Availability, respectively.  

The first stage in the performing of a RMA study is related to the primary data base available. In 

order to be useful, the data base should include chronological series of functioning times between 

failures or re-establishing system functioning. This involves establishing moments of occurrence and 

remedy of defaults with sufficient accuracy. These effective functioning or repair times represent the 

absolutely necessary input data for an efficient study to be performed.  

Processing a primary data base that does not reflect reality leads to results, which in their turn are 

not real. Implementation of these results leads to making erroneous decisions, which result in 

considerable economic losses. 

The last of the stages of performing a RMA study is results interpretation, which totally depends 

on the technical abilities of the technological engineers and reliability specialists. Results interpretation 

is made in strict agreement with production, development and maintenance management applied at 
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Intermediary stages, mainly referring to reliability, maintenance and availability indicators 

quantification, are relatively easy to be solved by efficient technologies. 

Solving the first and the last stage exclusively depends on the skill of the human operator, on 

his/her expertise, which cannot be replaced by anything else. 

Referring to the technical systems used in mining industry, relatively few RMA studies had been 

conducted. For underground and above ground coal industry, the results obtained by the team of 

mechanical engineers of the University of Petroșani are acknowledged. Similarly, the approaches in the 

extractive industry section of the Nord University of Baia Mare should be mentioned. 

In the field of coal industry, the classic reliability studies, in order, had been directed to: power 

support, specifically SMA-2 power support. These are equipment intended to extract bituminous coal 

in longwalls; TR-3 and TR-5 scraper belts; various equipments used in bituminous coal processing; 

bucket wheel excavators, specifically EsRc-1400 excavator, used to extract lignite in Oltenia coal field; 

high capacity conveyers used to haul coal in quarries. 

The aim of this paper is to carry out a reliability, maintainability and availability study on two 

transportation system categories. RMA studies refer to complex LHD machines and roller belt 

conveyors. The paper does not particularly approach design of reliable systems for the field under 

consideration. The principal contents are related to the way of assessment, measuring and prediction of 

reliability and maintainability of a system. 

The importance of the subject theme is highlighted by the concrete results obtained by the studies 

carried out on the analyzed products. Equally, from a theoretical point of view, the paper can constitute 

an analysis guide of the functionality of any type of electrical-mechanical element, machine or 

equipment. 

The results obtained by the paper can be used by economic agents exploiting technical systems 

of this type, Meanwhile, the results can be in the attention of all those that have preoccupation in the 

design and implementation of RMA studies. 

 

CHAPTER I. GENERAL CHARACTERIZATION OF TECHNICAL 

                        SYSTEMS LIFE 
 

The aim of this chapter is to present concepts defining and quantifying an RMA study of a product 

of electrical-mechanical nature.  

A RMA study includes more or less complete information regarding reliability, maintainability 

and availability of the analyzed product. 

In the first part the function of failure intensity for the life of a technical system is presented. This 

function is acknowledged in the literature of speciality as ‘bathtub curve’, the shape of this curve is 

strictly influenced by the four entities listed. 

The four concepts used in industrial practice, reliability, maintainability, maintenance and 

availability, are defined.  

From these definitions the structural connections between them result, all of them equally leading 

to the characterization of the functionality of a product. The complexity of the reliability concept is 

highlighted, which in a complete presentation should include approaches of technical, operational, 

commercial and management nature.  

Reliability and maintainability assessment of a product can be done in four ways:  

- using the data base regarding specific values of reliability and maintainability indicators for 

component elements and knowledge of the system’s architecture; 

- starting from the information coming after the use of the product or from the complaints made 

by the beneficiary, this being about an analysis of the operational reliability and maintainability. This 

way is applied in extensor along this paper; 

- trials performed on the new product, in view of verifying its functioning before launching its 

production; 

- starting from the opinion of some experts, when there are no information regarding reliability 

and maintainability of a component or of a new system.  
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CHAPTER II  RELIABILITY STUDY OF COMPLEX LHD MACHINES 
 

This chapter is intended to study the reliability of complex LHD machines, which are widely 

used in various sectors of industrial activities. In the first part, the reliability of the whole load machine 

is studied, with direct applicability on maintenance activities. In the second part, quantitative indicators 

specific to operational reliability for three component systems of the machine are quantified and 

interpreted. The reliability study performed represents a mirror of the machine functionality indicating 

its quality level at the moment of the study. The study justifies on the one hand the proposals for 

improving and modernizing the product, but especially the use of predictive maintenance strategy, 

depending on the state of the equipment. 

Evaluation of reliability indicators for the entirety of load and haul machines. 

In order to determine the empirical function of failure distribution, the 169 failures occurred in 

load and haul machines for a period of 2,5 years are highlighted. Only significant failures are taken into 

consideration, with adverse effects on nominal functioning parameters of the machines, minor failures 

being excluded. The failures considered did not cause significant damage and did not present significant 

risks for people. In order to establish the effective operation, it is considered that the load and haul 

machine effectively works 400 hours/month. These are uniform time periods, making up the duration 

of the reliability study. 

Reliability function, R(t), Fig. 2.5, quantifies the probability of good functioning in time of the 

load machine, in underground conditions and application of preventive maintenance. If the dynamic of 

failure occurrence follows Weibull’s biparametric distribution, the reliability function is expressed by 

the equation 
 

R(t/10196; 1,998) = e
– (

t

10196
)

1,998

  ,  t > 0.                          (2.12) 
 

Failure time probability density indicator, Fig. 2.6, also called good functioning time distribution 

density, f(t), in h-1, signifies the instantaneous failure occurrence speed. For normalized biparametric 

Weibull distribution is expressed by the equation 
 

f (t/10196; 1,998) = 1,959·10-4 (
t

10196
)

0,998

 e
– (

t

10196
)

1,998

,  t > 0  ,  h-1.                        (2.14) 

 

Failure rate indicator, written z(t), in h-1, Fig. 2.7, describes the probability of load machine failure 

at a certain time. The calculus relation of the indicator for normalised biparametric Weibull distribution 

is 
 

z(t/10196; 1,998) = 1,959·10-4 (
t

10196
)

0,998

  ,  t > 0  ,  h-1.                          (2.16) 
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Results obtained in determining principal 

reliability indicators lead to a series of 

conclusions and predictions. The conclusions 

mainly refer to quantitative reliability indicators, 

characterizing the functionality of the complex load and haul machine. Equally, appreciations are made 

regarding the determination of the empirical function of failure distribution, as well as on the estimation 

methodology of distribution parameters. 

1. The empirical distribution function has been determined based on absolute significant failures 

considered over uniform time intervals for 400 hours. This value is consistent with he effective work 

time for a calendar month. Mathematically, the empirical distribution function represents the relative 

cumulated frequency of failure occurrence. To determine distribution functions only mechanical 

failures have been considered, for which the main cause if occurrence is wear. This manner of 

assessment of the function of empirical distribution is determined by the precarious data base regarding 

load and hauls machines exploitation 

2. Application of Kolmogorov-Smirnov (KS) concordance test proves that the dynamic of failure 

occurrence and manifestation follows Weibull’s normalized biparametric distribution law. This shows 

that this distribution law characterises the best the load and haul machines’ functionality. The 

parameters of normalized biparametric Weibull distribution are shape parameter, β = 1,998, and real 

scale parameter, η = 10196 h. It should be specified that exponential and normal distribution laws are 

not validated, which is suggested by β parameter of Weibull distribution as well. 

3. Weibull biparametric normalized distribution parameters are estimated by the method of least 

squares. This is a statistic parametric method allowing punctual calculus of parameters of an indicated 

distribution. Literature of speciality shows that by the use of analytical method of least squares, the 

most realistic results are obtained. Equally, graphic method is used as well, also based on linearization 

of distribution function as well as the presented analytical method. Weibull distribution with parameters 

calculated by maximum likelihood method, and by the one of moments is not validated. Non-validation 

of these distributions substantiates the known idea that, by the application of punctual parametric 

statistical methods of parameter evaluation, their indicative values are obtained. 

4. Reliability and failure functions allow an overall appreciation of the load and haul machine 

functionality. These indicators cannot make reference to the machine’s component element or sub-units, 

which would allow their quality level to be indicated. According to Fig. 2.4, the probability for the load 

machine not to fail after 4800 hours of effective exploitation is 80%. It should be noted that the value 

is real in the conditions of adequate exploitation of the machine, especially respecting the conditions 

imposed by preventively planned maintenance. In other words, we should anticipate with an 80% 

certainty that the machine would not fail after 4800 hours of operation. It should be mentioned that this 

effective operating period means 12 calendar months, one year, respectively. 

5. A slow decrease of the reliability function curve is noticed, suggesting an instantaneous speed 

of low failure. According to probability density curve, Fig. 2.5, instantaneous failure speed is of 10-5 

failures/hour magnitude, suggesting a relatively high reliability level.  

0E+00

1E-04

2E-04

3E-04

4E-04

0 5000 10000 15000 20000

F
ai

lu
re

 r
at

e,
 z

(t
),

 h
-1

Operating time, t, h

Fig. 2.7. Failure rate function

0E+00

3E-05

6E-05

9E-05

0 5000 10000 15000 20000 25000

F
ai

lu
re

 p
ro

b
ab

il
it

y
, 

f(
t)

, 
h

-1

Operating time, t, h

Fig. 2.6. Density function 



7 

 

6. Evolution in time of the failure intensity or rate, Fig. 2.6, offers the most information regarding 

the functionality of the load machine. First, a quasi-linearity of failure rate evolution is noticed, 

characteristic of a parameter of β = 1,998 shape. In reliability, Rayleigh distribution is acknowledged, 

for which failure intensity increase is linear. The 10-4 order of magnitude for failure rate indicates an 

acceptable quality level for the load machine unit. The level is considered acceptable, considering the 

wear degree after a considerable functioning time. The linearity of the failure intensity function shows 

that the process increases proportionally with a very low factor, which according to Fig. 2.7 has the 

value 2∙10–8 (failure/h)/h. This shows that the machine is made up of homogeneous elements with close 

reliability characteristics. Evolution in time of the failure intensity shows that the load machine, 

according to the life span curve, is placed in the principal functioning period. In this stage, failures occur 

mainly due to wear. To this fatigue of the materials is added, considering that, at the moment of 

performing the reliability study, the machine has a considerable number of hours of operation. 

Corrosion and abrasion, processes that are amplified in underground working conditions, should also 

be taken into consideration. 

7. For a 50% reliability level, the mean failure time is approximately 8500 hours, which suggests 

that half of the total failures occurs until this moment. This can be construed as an indicator for planning 

preventive maintenance activity. The average time of good functioning between two failures, is also 

approximately 9000 hours, representing 1,8 calendar years.  

Evaluation of reliability indicators for load machine bucket manoeuvring hydraulic cylinder  
 

Table 2.11. Estimated values of the theoretical distribution parameters 
 

Distribution, symbol 
Parameter 

λ, h-1 m, h σ, h β η, h γ, h 

Exponential negative, Ep 5,130E-04      

Normal normalized, Nv  2098,421 1026,384    

Weibull biparametric 

normalized, Wp 
   1,915 2410,605  

Weibull biparametric 

normalized, Wv 
   2,008 2313,752  

Weibull triparametric, Wm    2,153 2369,473 1,831E-06 

 

Table 2.12. Testing the theoretical distributions of time between failures  
 

Distribution, 

symbol 
Distribution function, F(t) 

K-S test, Dmax < Dcr= Dα, 19 

Maximum 

deviation, 

Dmax 

Risk, 

α, % 

Critical value, 

Dα, 19 

Valida-

tion 

Exponential 

negative, Ep 
F(t) =1– e– λ t = 1– e– 5,130·10– 4 t                

(2.25) 
0,303597 

2,5 Dα; 19=0,320607 
YES 

0,5 Dα; 19=0,383792 

Normal 

normalized, 

Nv 

F(t) = 
1

2
+Φ (

t – m

σ
)=

1

2
+Φ (

t – 2098,421

1026,384
)     (2.26) 

0,199908 

20 Dα; 19=0,237346 

YES F(t) = NORMSDIST(
t – m

σ
)= 

=NORMSDIST(
t – 2098,421

1026,384
)          (2.27) 

0,5 Dα; 19=0,383792 

Weibull 

biparametric 

normalized, 
Wp 

F(t) =1– e
– (

t

η
)

β

= 1– e
– (

t

2410,605
)

1,915

             

(2.28) 
0,217284 

20 Dα; 19=0,237346 

YES 
0,5 Dα; 19=0,383792 

Weibull 

biparametric 

normalized, 
Wv 

F(t) =1– e
– (

t

η
)

β

= 1– e
– (

t

2313,752
)

2,008

            

(2.29) 
0,246697 

10 Dα; 19=0,271357 

YES 
0,5 Dα; 19=0,383792 
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Table 2.12. Testing the theoretical distributions of time between failures  
 

Distribution, 

symbol 
Distribution function, F(t) 

K-S test, Dmax < Dcr= Dα, 19 

Maximum 

deviation, 

Dmax 

Risk, 

α, % 

Critical value, 

Dα, 19 

Valida-

tion 

Weibull 

triparametric, 

Wm 
F(t) =1– e

– (
t – γ

η
)

β

= 1– e
– (

t – 1,831E-06

2369,473
)

2,153

  (2.30) 0,228676 
20 Dα; 19=0,237346 

YES 
0,5 Dα; 19=0,383792 

 

Table 2.14. Quantitative indicators of reliability for hydraulic cylinder. 

Normal normalized distribution Nv 
 

No. Name and symbol of the indicator Relationship  
Value, 

Unit 

1 Reliability function, R(t) 
R(t)= 

1

2
– Φ (

t – m

σ
) = 1– NORMSDIST(

t – m

σ
) =  

=1– NORMSDIST(
t – 2098,421

1026,384
)               (2.38) 

Fig. 

2.12 

2 Failure function, F(t) 
F(t)= 

1

2
+ Φ (

t – m

σ
) = NORMSDIST(

t – m

σ
) =  

= NORMSDIST(
t – 2098,421

1026,384
)                   (2.39) 

Fig. 

2.13 

3 Failure probability function, f (t) f (t)= 
1

σ √2π
e

– 
1

2
(

t – m

σ
)

2

=
1

1026,384 √2π
e

– 
1

2
(

t – 2098,421

1026,384
)

2

 

(2.40) 

Fig. 

2.14 

4 Failure rate function, z(t) z(t) = 
f (t)

R(t)
 = 

1

1026,384 √2π
 e

– 
1
2

(
t – 2098,421

1026,384
)
2

1– NORMSDIST(
t – 2098,421

1026,384
)
                (2.41) 

Fig. 

2.15 

5 
Mean time between failures, MTBF, 

E(t) 
MTBF = m = 2098,421                                (2.42) 2098 h 

6 Median operating time, t0,5, tmed t0,5  = m = 2098,421                                     (2.43) 2098 h 

7 Dispersion of operating time, D D = σ2 = (1026,384)2                                   (2.44) 
1053464 

h2 

 

Tabelul 2.17. Quantitative indicators of reliability for hydraulic cylinder. 

Weibull triparametric distribution Wm 
 

No. 
Name and symbol of the 

indicator 
Relationship  

Value, 

Unit 

1 Reliability function, R(t) R(t)= e
– (

t – γ

η
)

β

 = e
– (

t -1,831E-06

2369,473
)

2,153

                                     (2.59) Fig. 2.12 

2 Failure function, F(t) F(t) = 1– e
– (

t – γ

η
)

β

 = 1– e
– (

t -1,831E-06

2369,473
)

2,153

                         (2.60) Fig. 2.13 

3 
Failure probability 

function, f (t) 

f (t)= 
β

η
(

t – γ

η
)

 β –1

e
– (

t – γ

η
)

β

= 

= 9,086·10-4(
t -1,831E-06

2369,473
)

1,153

e
– (

t -1,831E-06

2369,473
)

2,153

          (2.61) 

Fig. 2.14 

4 Failure rate function, z(t) z(t) = 
β

η
(

t – γ

η
)

 β –1

= 9,086·10-4 (
t -1,831E-06

2369,473
)

1,153

               (2.62) Fig. 2.15 

5 
Mean time between 

failures, MTBF, E(t) 

MTBF =γ+ η Γ (
1

β
+1) =1,831·10-4+ 2369,473 Γ (

1

2,153
+1)  

(2.63) 
2098 h 
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Tabelul 2.17. Quantitative indicators of reliability for hydraulic cylinder. 

Weibull triparametric distribution Wm 
 

No. 
Name and symbol of the 

indicator 
Relationship  

Value, 

Unit 

6 
Median operating time, t0,5, 

tmed 

t0,5 = γ+ η √− ln 0,5
β

 = 1,831·10-4+ 2369,473 √− ln 0,5
2,153

  

 (2.64) 
1999 h 

7 
Dispersion of operating 

time, D 

D = η2 {Γ (
2

β
+1) – [Γ (

1

β
+1)]

2

} =  

= 2369,4732 {Γ (
2

2,153
+1) – [Γ (

1

2,153
+1)]

2

}             (2.65) 

1053872 

 h2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results obtained in determining the 

main reliability indicators lead to a series of conclusions and predictions regarding the functionality of 

the hydraulic cylinder. 

1. The empirical failure distribution function has been determined based on the statistical series 

made up of good functioning times between failures. The empirical data meet the criteria of 

independence and distribution according to the same law.  

Mathematically, the empirical distribution function has been calculated using the most usual 

estimator indicated by the literature of specialty for Weibull distributions. The good functioning time 

of cylinders matches the effective work time of the haul machines for a calendar month of 400 hours. 

To determine the distribution function, only significant mechanical failures have been considered. The 
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main causes of occurrence of these failures are wear, deformation, tear and fatigue. 

2. From Figs. 2.12 and 2.13 the trend of grouping results, even overlapping reliability and non-

reliability curves, for normal and Weibull distribution in the three forms. For these distributions, the 

maximum distances between the empiric time distribution law until failure and the theoretical laws are 

the smallest. The distance reaches approximately 20% for normal distribution, for Weibull distribution 

being higher by maximum 5%. The smallest value of the distance and good functioning time dispersion 

proves that normal distribution characterizes the best the functionality of the hydraulic cylinder. Due to 

the relatively small differences it is considered that normal and Weibull distribution laws can equally 

well characterize the functionality of the product. It is considered that, although validated, the 

exponential model underestimates the good functioning of the analyzed product. 

3. The reliability and failure functions allow an overall appreciation of the functionality of the 

hydraulic cylinder. These indicators cannot refer to component elements of the cylinder that would 

allow indication of their quality level. 

4. According to Fig. 2.12, the probability that the hydraulic cylinder would not fail after 1200 

hours of effective functioning is 80%. In other words, we should anticipate, with 80% certainty that the 

hydraulic cylinder would not fail after 1200 hours of functioning. It is mentioned that this period of 

effective functioning matches three calendar months. 

5. For a 2000 hours functioning period, corresponding to five calendar months, the reliability of 

the motor becomes equal to its non-reliability, namely 50%. The value is consistent with an average 

good functioning time, and it is confirmed by the indicator calculus for the validated distribution laws. 

This value of five months can be taken into consideration for including in the revision plan the 

verification of the cylinder integrity, or even its replacement. It is necessary to check the integrity or 

seals, the wear degree of the cylinder mounting elements and the level of rod deformation. 

6. Reliability decrease from 80% to 50% is consistent with a functioning duration of 800 hours. 

This proves that the failure speed has a relatively large value, which is confirmed by the smoothly 

decreasing slope of the reliability function. This is also proved by the graphics of probability density 

and failure intensity or rate. 

7. Analysis of failure intensity shows its increasing trend, explicable by manifestation in time, 

especially of wear and fatigue processes. Its value, of 10-3 failures/hour, for the average time of 

functioning is still a modest value.  

According to Weibull distribution, where shape parameter ß=2, the increase of failure rate is 

linear with 4∙10–7 (failure/h)/h factor of proportionality. This also proves that the cylinder is made up 

of homogeneous elements with close reliability levels.   

8. The approximately symmetrical shape of the probability density curve shows the equality of 

the good functioning average time with its median, around the value of 2000 hours. This suggests that 

50% of the failures occur before this date and the other half afterwards. This influences the planning of 

revisions and repairs. 

9. The values of reliability indicators obtained for the analyzed hydraulic cylinders lead to the 

necessity of reducing the number and frequency of significant failures. This intention can be achieved 

by reconsidering the cylinder design, considering that it represents an obsolete solution. The sealing 

gaskets quality and the mechanical characteristics of the materials for the cylinder bar and the fixing 

elements should be reconsidered. 

Evaluation of reliability indicators for hydraulic pumps in brake systems 
 

Table 2.19. Estimated values of the failure distribution laws parameters 
 

Distribution, symbol 
Parameter 

λ, h-1 m, h σ, h β η, h γ, h 

Exponential negative, Ep 1,488·10-4      

Normal normalized, Nv  7030,417 1541,101    

Weibull biparametric normalized, Wp    5,125 7641,913  

Weibull biparametric normalized, Wv    4,998 7706,140  

Weibull triparametric, Wm    5,246 7635,829 6,24E-06 
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Table 2.20. Testing the theoretical distribution laws of time between failures 
 

Distribution, 

symbol 
Distribution function, F(t) 

K-S test, Dmax < Dcr= Dα, 12 

Maximum 

deviation, 

Dmax 

Risk, 

α, % 

Critical value, 

Dα, 19 

Va-

lida-

tion 

Exponential 

negative, Ep F(t) =1– e– λ t = 1– e– 1,488·10– 4 t           (2.66)  0,544472 0,5 Dα;12=0,476715 NOT 

Normal 

normalized, Nv 

F(t) = 
1

2
+Φ (

t – m

σ
) = 

1

2
+Φ (

t – 7030,417

1541,101
)  (2.67) 

0,141006 

20 Dα; 12=0,295770 

YES F(t) = NORMSDIST(
t – m

σ
)= 

= NORMSDIST(
t – 7030,417

1541,101
)           (2.68) 

0,5 Dα; 12=0,476715 

Weibull 

biparametric, 

Wp 
F(t) =1– e

– (
t

η
)

β

= 1– e
– (

t

7641,913
)

5,125

       (2.69) 0,163483 
20 Dα; 12=0,295770 

YES 
0,5 Dα; 12=0,476715 

Weibull 

biparametric, 

Wv 
F(t) =1– e

– (
t

η
)

β

= 1–e
– (

t

7706,140
)

4,998

        (2.70) 0,178514 
20 Dα; 12=0,295770 

YES 
0,5 Dα; 12=0,476715 

Weibull 

triparametric, 

Wm 
F(t) =1– e

– (
t – γ

η
)

β

= 1– e
– (

t – 6,24E-06 

7635,829
)

5,246

 (2.71) 0,162262 

20 Dα; 12=0,295770 

YES 
0,5 Dα; 12=0,476715 

 

Table 2.22. Quantitative indicators of reliability for the hydraulic pump. 

Weibull biparametric normalized distribution Wp 
 

No. Name and symbol of the indicator Relationship  
Value, 

U 

1 Reliability function, R(t) R(t) = e
– (

t

η
)

β

 = e
– (

t

7641,913
)

5,125

                          (2.79) Fig. 2.18 

2 Failure function, F(t) F(t) = 1– e
– (

t

η
)

β

 = 1– e
– (

t

7641,913
)

5,125

                (2.80) Fig. 2.19 

3 Failure probability function, f (t) 
f(t)= 

β

η
(

t

η
)

 β –1

e
– (

t

η
)

β

= 

=7,944·10-4 (
t

7641,913
)

4,125

e
– (

t

7641,913
)

5,125

    (2.81) 

Fig. 2.20 

4 Failure rate function, z(t) z(t) = 
β

η
(

t

η
)

 β –1

= 6,706·10-4 (
t

7641,913
)

4,125

         (2.82) Fig. 2.21 

5 
Mean time between failures, MTBF, 

E(t) 
MTBF = η Γ (

1

β
+1) = 7641,913 Γ (

1

5,125
+1)      (2.83) 7026 h 

6 Median operating time, t0,5, tmed t0,5 = η √− ln 0,5
β

 = 7641,913 √− ln 0,5
5,125

      (2.84) 7114 h 

7 Dispersion of operating time, D 
D = η2 {Γ (

2

β
+1) – [Γ (

1

β
+1)]

2

} =  

= (7641,913)2 {Γ (
2

5,125
+1) – [Γ (

1

5,125
+1)]

2

}(2.85) 

2473270 

h2 

 

Table 2.23. Quantitative indicators of reliability for the hydraulic pump. 

Weibull biparametric normalized distribution Wv 
 

No. Name and symbol of the indicator Relationship  
Value, 

U 

1 Reliability function, R(t) R(t) = e
– (

t

η
)

β

 = e
– (

t

7706,140
)

4,998

                           (2.86) Fig. 2.18 
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Table 2.23. Quantitative indicators of reliability for the hydraulic pump. 

Weibull biparametric normalized distribution Wv 
 

No. Name and symbol of the indicator Relationship  
Value, 

U 

2 Failure function, F(t) F(t) = 1– e
– (

t

η
)

β

 = 1– e
– (

t

7706,140
)

4,998

                 (2.87) Fig. 2.19 

3 Failure probability function, f (t) 
f(t)= 

β

η
(

t

η
)

 β –1

e
– (

t

η
)

β

= 

=6,485·10-4(
t

7706,140
)

3,998

e
– (

t

7706,140
)

4,998

      (2.88) 

Fig. 2.20 

4 Failure rate function, z(t) z(t)=
β

η
(

t

η
)

 β –1

=6,485·10-4(
t

7706,140
)

3,998

           (2.89) Fig. 2.21 

5 
Mean time between failures, MTBF, 

E(t) 
MTBF = η Γ (

1

β
+1) = 7706,140·Γ (

1

4,998
+1)   (2.90) 7075 h 

6 Median operating time, t0,5, tmed t0,5 = η √– ln 0,5
β

 = 7706,140 √– ln 0,5
4,998

        (2.91) 7161 h 

7 Dispersion of operating time, D 
D = η2 {Γ (

2

β
+1) – [Γ (

1

β
+1)]

2

} =  

= 7706,1402 {Γ (
2

4,998
+1) – [Γ (

1

4,998
+1)]

2

}       (2.92) 

2628378 
h2 
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The results obtained in the determination of the main reliability indicators lead to a series of 

conclusions and prediction regarding hydraulic plunger pumps functionality. 

1. Empirical failure distribution function is determined based on a statistical series made up of 

good functioning times between failures. The data meet independence and identical distribution criteria. 

Mathematically, empirical distribution is calculated using the most usual estimator indicated in 

literature for Weibull distribution. To determine distribution function, only significant failures, of 

mechanical nature have been considered. The main failure causes are the processes of wear and 

deformation of piston and cylinder surfaces. Good functioning times of pumps are in agreement with 

the effective time of 400 hours of work for the haul machine in a calendar month.  

2. Fig. 2.18 shows the trend of reliability and non-reliability curves overlapping, for normal and 

Weibull distribution in the three forms. For normal distribution, the 14% distance between empirical 

and theoretical distribution has the least value. This shows that normal distribution characterizes the 

best pump functionality. This is supported by the least value of good functioning times dispersion.  

For Weibull distribution the distance varies between 16-18%, which is very close.  The relatively 

close distance values support the idea that any of the four distributions can characterize hydraulic 

pumps’ functionality very well. 

3. Reliability and failure functions allow an overall appreciation of hydraulic pumps 

functionality. These indicators cannot refer to the pump’s component elements, which would allow 

indication of their qualitative level.  

4. According to Fig. 2.18, before 3200 hours of functioning pumps do not practically fail. The 

probability for the hydraulic pumps not to fail after 5400 hours of effective functioning is 80%. In other 

words, we should anticipate, with 80% certainty that hydraulic pumps would not fail after 5600 hours 

of functioning. To be mentioned that this period of effective functioning represents 14 calendar months, 

1,2  years, respectively.  

5. For 7200 hours functioning time, corresponding to 18 calendar months (1,5 years), pump 

reliability becomes equal to non-reliability, namely 50%. The value is consistent with average good 

functioning time, and it is confirmed by the indicator calculation for the validated distribution laws. 

This 18 months value can be taken in consideration for the inclusion of the pump integrity verification 

in the revision plan, or even its replacement. 

6. Reliability decrease from 80 to 50% corresponds to a functioning duration of 1600 hours. This 

proves that the failure speed is high, according to the functioning time probability density graph, of 10-

4 failures /hour. This is confirmed by the great slope of reliability function and the failure probability 

and intensity density graphs. 

7. The analysis of failure intensity variation shows its increasing trend, explicable by 

manifestation in time, especially of the pump functional surfaces wear and deformation.  

Its value is 10-3 failures/hour, for the average functioning time is a very high value. 

8. The approximately symmetrical shape of the probability density curve shows the equality 
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between good functioning average time and its median, around the value of 7000 hours. This suggests 

that 50% of the failures occur before that date, and the other half afterwards. This influences revision 

and repair planning. 

9. Reliability indicators values obtained lead to the necessity of reducing the number and 

frequency off significant failures occurrence. This can be achieved by reconsidering the pump 

construction, considering that it is an obsolete solution. Overall design of the pump piston and cylinder 

conjugated surfaces should be reconsidered, regarding material quality and execution technology. 

Evaluation of average duration of utilization of friction pads in the brake system 
 

Table 2.26. Estimated values of the theoretical distribution parameters for friction pads 
 

Distribution, symbol 
Parameter 

λ, h-1 m, h σ, h β η, h γ, h 

Exponential negative, Ep 1,014·10-3      

Normal normalized, Nv  1494,167 245,630    

Weibull biparametric, Wp    6,811 1599,153  

Weibull biparametric, Wv    7,026 1605,691  

Weibull triparametric, 

Wm 

   7,166 1595,352 2,447E-04 

 

Table 2.27. Testing the theoretical distribution laws of friction pads operating times 
 

Distribution, 

symbol 
Distribution function, F(t) 

K-S test, Dmax < Dcr= Dα, 24 

Maximum 

deviation, 

Dmax 

Risk, α, 

% 

Critical value, 

Dα, 19 

Va-

lida-

tion 

Exponential 

negative, Ep F(t) =1– e– λ t = 1– e– 1,014·10– 3 t          (2.100) 0,697183 0,5 Dα; 24=0,343184 NOT 

Normal 

normalized, Nv 

F(t) = 
1

2
+Φ (

t – m

σ
) = 

1

2
+Φ (

t – 1494,167

245,630
) (2.101) 

0,131922 

20 Dα; 24=0,212048 

YES F(t) = NORMSDIST(
t – m

σ
)= 

=NORMSDIST(
t – 1494,167

245,630
)            (2.102) 

0,5 Dα; 24=0,343184 

Weibull 

biparametric, 

Wp 
F(t) =1– e

– (
t

η
)

β

= 1– e
– (

t

1599,153
)

6,811

       (2.103) 0,148327 

20 Dα; 24=0,212048 

YES 
0,5 Dα; 24=0,343184 

Weibull 

biparametric, 

Wv 
F(t) =1– e

– (
t

η
)

β

= 1– e
– (

t

1605,691
)

7,026

       (2.104) 0,163513 

20 Dα; 24=0,212048 

YES 
0,5 Dα; 24=0,343184 

Weibull 

triparametric, 

Wm 
F(t) =1– e

– (
t – γ

η
)

β

= 1–e
– (

t – 2,447E-04 

1595,352
)

7,166

(2.105) 0,156463 

20 Dα; 24=0,212048 

YES 
0,5 Dα; 24=0,343184 

 

Table 2.28. Quantitative indicators of reliability for friction pads. 

Normal normalized distribution Nv 
 

No. Name and symbol of the indicator Relationship  Value, U 

1 Reliability function, R(t) 
R(t) = 

1

2
– Φ (

t – m

σ
) = 1– NORMSDIST(

t – m

σ
) = 

=1– NORMSDIST(
t – 1494,167

245,630
)                (2.106) 

Fig. 2.24 

2 Failure function, F(t) 
F(t) = 

1

2
+ Φ (

t – m

σ
) = NORMSDIST(

t – m

σ
) =  

= NORMSDIST(
t – 1494,167

245,630
)                    (2.107) 

Fig. 2.25 
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Table 2.28. Quantitative indicators of reliability for friction pads. 

Normal normalized distribution Nv 
 

No. Name and symbol of the indicator Relationship  Value, U 

3 Failure probability function, f (t) f(t) = 
1

σ √2π
e

– 
1

2
(

t – m

σ
)

2

=
1

245,630 √2π
e

– 
1

2
(

t – 1494,167

245,630
)

2

  (2.108) Fig. 2.26 

4 Failure rate function, z(t) z(t) = 
f (t)

R(t)
 = 

1

245,630  √2π
 e

– 
1
2

(
t – 1494,167

245,630
)

2

1– NORMSDIST(
t – 1494,167

245,630
)
                 (2.109) Fig. 2.27 

5 
Mean time between failures, 

MTBF, E(t) 
MTBF = m = 1494,                                         (2.110) 1494 h 

6 Median operating time, t0,5, tmed t0,5 = m = 1494,167                                         (2.111) 1494 h 

7 Dispersion of operating time, D D = σ2 = (245,630)2                                        (2.112) 60334 h2 

 
Tabelul 2.30. Quantitative indicators of reliability for friction pads. 

Weibull biparametric normalized distribution Wv 
 

No. Name and symbol of the indicator Relationship  
Value, 

U 

1 Reliability function, R(t) R(t) = e
– (

t

η
)

β

 = e
– (

t

1605,691
)

7,026

                               (2.120) 
Fig. 

2.24 

2 Failure function, F(t) F(t) = 1– e
– (

t

η
)

β

 = 1– e
– (

t

1605,691
)

7,026

                (2.121) 
Fig. 

2.25 

3 Failure probability function, f (t) 
f(t) = 

β

η
(

t

η
)

 β –1

e
– (

t

η
)

β

= 

= 4,375·10-3 (
t

1605,691
)

6,026

e
– (

t

1605,691
)

7,026

  (2.122) 

Fig. 

2.26 

4 Failure rate function, z(t) z(t) = 
β

η
(

t

η
)

 β –1

= 4,375·10-3 (
t

1605,691
)

6,026

      (2.123) 
Fig. 

2.27 

5 Mean time between failures, MTBF, E(t) MTBF = η Γ (
1

β
+1) = 1605,691 Γ (

1

7,026
+1) (2.124) 1502 h 

6 Median operating time, t0,5, tmed t0,5 = η √– ln 0,5
β

 = 1605,691 √– ln 0,5
7,026

      (2.125) 1524 h 

7 Dispersion of operating time, D 
D = η2 {Γ (

2

β
+1) – [Γ (

1

β
+1)]

2

} =  

=(1605,691)2{Γ (
2

7,026
+1) – [Γ (

1

7,026
+1)]

2

} (2.126) 

63280 

h2 
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1. The empirical failure distribution function is determined based on a statistic series made up of 

the times before the friction pads are removed. The data meet the independence and identical 

distribution criteria. Mathematically, the empirical distribution function is calculated using the most 

usual estimator indicated in literature for Weibull distribution. To determine the distribution function, 

only significant failures caused by over the admitted limit plate wear was taken into consideration. The 

good functioning time of the plates is consistent with the effective 400 hours work time of the haul 

machine for one calendar month. It is estimated however, that for one calendar month, the effective 

work time for the plates is 200 hours. 

2. From Fig. 2.24 small differences result between reliability and non-reliability curves, for 

normal and Weibull distribution in the three shapes. For normal distribution, the 13% distance between 

the empirical and theoretical distribution has the smallest value. This shows that normal distribution 

characterizes the best the brake plate’s functionality. The statement is supported by the least value of 

good functioning time’s dispersion. For Weibull distribution the distance varies between 14,8-16,3 %, 

which are very close values. The relatively close values of distances support the idea that any of the 

four distributions can characterize very well the plates’ functionality. The small value of dispersion, of 

standard deviation of plates’ utilization times, respectively, show the homogeneity of the plates’ 

production.  

3. According to Fig. 2.24, the probability for the plates not to be removed after 1300 hours of 

effective functioning is 80%. In other words, we should anticipate, with 80% certainty, that the plates 

would not be removed after 1300 hours. This period is consistent with an effective functioning time of 

only 3,25 months for the machine, and 6,5 months for the plates.  

4. For an 1500 hours functioning time, which is consistent with 7,5 calendar months, the plates’ 
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reliability becomes equal to non-reliability, namely 50%. The value is consistent with the average good 

functioning time, and it is substantiated by the calculation of the indicator for validated distribution 

laws. This 7,5 months value can be taken into consideration in order to include plate integrity 

verification in the revision plan, or even for replacement. 

5. Reliability decrease from 80% to 50% is consistent with a 200 hours functioning time. This 

proves that the failure speed is very high, according to the functioning time probability density being 

10-3 failures/hour. This is confirmed by the great slope of the reliability function and the graphs of 

probability density and failure intensity. 

6. The analysis of failure intensity variation shows that practically before 100 hours of utilization, 

five months, respectively, the brake plates are definitely in adequate functioning condition. After this 

period an increasing trend occurs, slower at first, followed by a significant increase. Its value of 10-3 

failure/hour, for average functioning time is a very high value. This shows the very low quality level of 

the plates. 

7. The obtained reliability indicators show the necessity of increasing the plates’ utilization time. 

This can be achieved by reconsidering the overall design of the plates. First, the antifriction material of 

the plates should be reconsidered. 

 

CHAPTER III  DATA BASE FOR THE RMA STUDY OF ROLLER BELT 

                           CONVEYORS 
 

The objective of this chapter is to establish the functional data foundation that would allow 

quantification of RMA indicators for the four roller belt conveyers. The functional data base is made 

up of statistical series that express, for each conveyer, the times between failures, as well as the 

adjustment times for each failure. 

Primary data are recorded for a six months period. They include, separately for the four 

conveyers, the day and hour of the failure, and the day and hour of its remedy. These data, called gross 

data, come from the daily reports of the halts, as well as from the work order records created by the 

maintenance staff.  

For Oltenia mine field quarries conditions are created to record these primary data at the open pit 

dispatchers. These primary data used in RMA studies are considered secondary data. This means that 

the data are collected by someone else than those who analyze the reliability and maintainability. The 

data are kept with the general aim of information supply about production and maintenance. 

Primary data base allows chronological times to and effective times repair times to be determined 

between failures. To evaluate primary data, chronological times of functioning times between failures 

TBFi, as well as repair times are established. Similarly, cumulative CTBFi functioning times repair times 

CTTRi are established. 

Evaluation of chronological series of operational times 

Evaluation of chronological series is done by application of functioning and repair times trend 

correlation test, as well as the one of serial correlation.   

Trend correlation test is obtained by relating cumulative functioning and repair to the total 

number of failures. The approximately linear dependence between data shows that they are identically 

distributed. Trend correlation test application for the four conveyers shows that functional times are 

identically distributed. This shows that they can be quantified by the same law of distribution.  

The serial correlation test, quantifying consecutive data dispersion, shows the connection 

between two consecutive failures, suggesting whether the data are independent or not. Application of 

serial correlation tests for the four conveyers shows that the data are independent. This shows that there 

is no connection between two consecutive failures, in other words, previous failure does not influence 

future failures. 

The two correlation tests allow the use of the same theoretical distribution law governing failure 

manifestation for the four roller belt conveyers.  

Distributions analyze times before failure or between failures, as well as repair times or times re-

establishing conveyer functioning. 
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0

1

2

3

4

5

0 1 2 3 4 5

R
ep

ai
r 

ti
m

e,
 T

T
R

i-
1
, 
h

Repair time, TTRi, h

Fig. 3.14. Correlation test for

TTRi, TB-3

 
 

R² = 0.9987

0

10

20

30

0 1500 3000 4500

N
u
m

b
er

 o
f 

fa
il

u
re

s

Cumulative time between failures, CTBF, h

Fig. 3.11. Trend test for TBFi, TB-3



20 

 

 

 

 
 

Distribution of roller belt conveyors’ failures 

 
Table 3.13. Roller belt conveyor TB-1. Statistical series of times between failures, TBFi, ti. 

Empirical distribution function F̂(ti)  
 

i 
TBFi, ti, 

h 
F̂(ti) i 

TBFi, ti, 

h 
F̂(ti) i 

TBFi, ti, 

h 
F̂(ti) i 

TBFi, ti, 

h 
F̂(ti) 

1 22,500 0,014170 14 74,333 0,277328 27 90,833 0,540486 40 109,500 0,803644 

2 26,917 0,034413 15 75,083 0,297571 28 93,750 0,560729 41 110,250 0,823887 

3 36,416 0,054656 16 75,333 0,317814 29 95,000 0,580972 42 111,917 0,844130 

4 37,000 0,074899 17 77,750 0,338057 30 96,667 0,601215 43 112,667 0,864372 

5 40,083 0,095142 18 79,083 0,358300 31 99,750 0,621457 44 112,750 0,884615 

6 50,000 0,115385 19 80,333 0,378543 32 101,000 0,641700 45 113,500 0,904858 

7 52,167 0,135628 20 81,083 0,398785 33 102,167 0,661943 46 114,084 0,925101 

8 52,917 0,155870 21 84,083 0,419028 34 104,000 0,682186 47 115,500 0,945344 

9 57,750 0,176113 22 87,167 0,439271 35 104,083 0,702429 48 123,750 0,965587 

10 60,167 0,196356 23 87,250 0,459514 36 104,750 0,722672 49 134,000 0,985830 

11 63,750 0,216599 24 87,750 0,479757 37 105,250 0,742915    

12 67,000 0,236842 25 87,917 0,500000 38 108,500 0,763158    

13 68,500 0,257085 26 88,750 0,520243 39 109,250 0,783401    
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20

50

80

110

140

0 50 100 150

T
im

e 
b

et
w

ee
n
 f

ai
lu

re
s,

 

T
B

F
i, 

h

Time between failures, TBFi-1, h

Fig. 3.16. Correlation test for TBFi, 

TB-4

 
 

0

4

8

12

0 5 10 15

R
ep

ai
r 

ti
m

e,
 

T
T

R
i-

1
, 
h

Repair time, TTRi, h

Fig. 3.18. Correlation test for 

TTRi, TB-4

 
 

y = 0.6574x - 5.7563

R² = 0.992

0

20

40

60

0 20 40 60 80 100

N
u
m

b
er

 o
f 

re
p

ai
rs

Cumulative repair time, CTTR, h

Fig. 3.17. Trend test for CTTRi, 

TB-4



21 

 

Table 3.14. Roller belt conveyor TB-1. Estimated values of the theoretical distribution 

parameters for time between failures, TBFi 
 

Distribution 
Parameter 

λ (t), h-1 m(t), h σ(t), h β(t) η(t), h γ(t), h 

Exponential negative, Ep 1,304·10-2      

Normal normalized, Nv  85,184 26,591    

Weibull biparametric 

normalized, Wp 
   3,022 96,143  

Weibull biparametric 

normalized, Wv 
   3,031 91,669  

Weibull triparametric, Wm    3,553 94,598 4,278E-09 

 
Table 3.15. Roller belt conveyor TB-1. Testing the theoretical distribution laws  

of time between failures 
 

Distribution, 

symbol 
Distribution function, F(t) 

K-S test, Dmax < Dcr = Dα, 49 

Maximum 

deviation, 

Dmax 

Risk, 

α, % 

Critical value, 

Dα, 19 

Va-

lida-

tion 

Exponential, Ep F(t) =1– e– λ t = 1– e– 1,304·10
– 2

 t            (3.1) 0,383877 0,5 Dα;49=0,242772 NOT 

Normal, Nv 

F(t) = 
1

2
+Φ (

t – m

σ
) = 

1

2
+Φ (

t – 85,184

26,591
)     (3.2) 

0,110700 

20 Dα;49=0,149870 

YES F(t) = NORMSDIST(
t – m

σ
)= 

= NORMSDIST(
t – 85,184

26,591
)           (3.3) 

0,5 Dα;49=0,242772 

Weibull 

biparametric, Wp F(t) =1– e
– (

t

η
)

β

= 1– e
– (

t

96,143
)

3,022

           (3.4) 0,131562 
20 Dα;49=0,149870 

YES 
0,5 Dα;49=0,242772 

Weibull 

biparametric, Nv F(t) =1– e
– (

t

η
)

β

= 1– e
– (

t

91,669
)

3,031

           (3.5) 0,157141 
10 Dα;19=0,171279 

YES 
0,5 Dα;49=0,242772 

Weibull 

triparametric, Wp F(t) =1– e
– (

t – γ

η
)

β

=1– e
– (

t – 4,278E-09

94,598
)

3,553

    (3.6) 0,107523 
20 Dα;49=0,149870 

YES 
0,5 Dα;49=0,242772 

 

Table 3.16. Roller belt conveyor TB-1. Statistical series of repair times, TTRi, tri. 

Empirical distribution function �̂�(tri) 
 

i 
TTRi, tri, 

h 
M̂(tri) i 

TTRi, tri, 

h 
M̂(tri) i 

TTRi, tri, 

h 
M̂(tri) i 

TTRi, tri, 

h 
M̂(tri) 

1 0,417 0,014170 14 1,083 0,277328 27 1,500 0,540486 40 2,167 0,803644 

2 0,500 0,034413 15 1,167 0,297571 28 1,500 0,560729 41 2,167 0,823887 

3 0,750 0,054656 16 1,250 0,317814 29 1,750 0,580972 42 2,250 0,844130 

4 0,750 0,074899 17 1,250 0,338057 30 1,750 0,601215 43 2,333 0,864372 

5 0,750 0,095142 18 1,250 0,358300 31 1,750 0,621457 44 2,333 0,884615 

6 0,750 0,115385 19 1,250 0,378543 32 1,750 0,641700 45 2,500 0,904858 

7 0,750 0,135628 20 1,250 0,398785 33 1,833 0,661943 46 2,750 0,925101 

8 0,917 0,155870 21 1,333 0,419028 34 1,833 0,682186 47 3,417 0,945344 

9 0,917 0,176113 22 1,333 0,439271 35 1,917 0,702429 48 4,417 0,965587 

10 1,000 0,196356 23 1,333 0,459514 36 2,000 0,722672 49 5,000 0,985830 

11 1,000 0,216599 24 1,500 0,479757 37 2,000 0,742915    

12 1,083 0,236842 25 1,500 0,500000 38 2,000 0,763158    

13 1,083 0,257085 26 1,500 0,520243 39 2,083 0,783401    
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Table 3.17. Roller belt conveyor TB-1. Estimated values of the theoretical distribution parameters 

for repair times 
 

Distribuția 

Parameter 

μ(tr), 

h-1 

m(tr), 

h 

σ(tr), 

h 

m(lgtr), 

h 

tmed(lgtr), 

h 
σ(lgtr) β(tr) 

η(tr), 

h 
β(tr) 

η(tr), 

h 
β(tr)r 

η(tr), 

h 

γ(tr), 

h 

Exponential, Ep 0,691             

Normal, Nv  1,646 0,886           

Lognormal, LNv    0,376 1,457 0,499        

Weibull biparametric, 

Wp 
      2,378 1,844      

Weibull biparametric, 

Wv 
        2,022 1,882    

Weibull triparametric, 

Wm 
          1,935 1,856 

2,148 

E-10 
 

Table 3.18. Roller belt conveyor TB-1. Testing the theoretical distribution laws of repair times 
 

Distribution, 

symbol 
Distribution function, M(tr) 

K-S test, Dmax < Dcr = Dα, 49 

Maximum 

deviation, 

Dmax 

Risk, 

α, % 

Critical value, 

Dα, 19 

Va-

lida-

tion 

Exponential, Ep M(tr) =1– e– μ tr = 1– e– 0,691 tr                       (3.7) 0,370109 0,5 Dα;49=0,242772 NOT 

Normal, Nv 

M(tr) = 
1

2
+Φ (

tr–m  

σ
) = 

1

2
+Φ (

 tr – 1,646  

0,886
)     (3.8) 

0,126248 

20 Dα;49=0,149870 

YES M(tr) = NORMSDIST(
tr – m

σ
)= 

= NORMSDIST(
tr – 1,646

0,886
)              (3.9) 

0,5 Dα;49=0,242772 

Lognormal, 

LNv 

M(tr)=
1

2
+Φ (

ln tr–m  

σ
)=

1

2
+Φ (

ln tr – 0,376  

0,499
) (3.10) 

0,082644 

20 Dα;49=0,149870 

YES M(tr) = NORMSDIST(
1

σ
 ln 

tr

tmed
)= 

= NORMSDIST(
1

0,499
 ln 

tr

1,457
)     (3.11) 

0,5 Dα;49=0,242772 

Weibull 

biparametric, 

Wp 

M(tr) =1– e
– (

tr

η
)

β

= 1– e
– (

tr

1,844
)

2,378

             (3.12) 0,103087 
20 Dα;49=0,149870 

YES 
0,5 Dα;49=0,242772 

Weibull 

biparametric, 

Wv 

M(tr) =1– e
– (

tr

η
)

β

= 1– e
– (

tr

1,882
)

2,022

             (3.13) 0,109716 
20 Dα;49=0,149870 

YES 
0,5 Dα;49=0,242772 

Weibull 

triparametric, 

Wm 
M(tr) =1– e

– (
tr – γ

η
)

β

=1– e
– (

tr–2,148E–10

1,856
)

1,935

     (3.14) 0,124559 
20 Dα;49=0,149870 

YES 
0,5 Dα;49=0,242772 

 

Table 3.19. Roller Belt conveyor TB-2. Statistical series of times between failures, TBFi, ti. Empirical 

distribution function F̂(ti) 
 

i 
TBFi, ti, 

h 
F̂(ti) i 

TBFi, ti, 

h 
F̂(ti) i 

TBFi, ti, 

h 
F̂(ti) i 

TBFi, ti, 

h 
F̂(ti) 

1 30,250 0,022293 9 117,167 0,277070 17 150,167 0,531847 25 175,750 0,786624 

2 44,500 0,054140 10 123,750 0,308917 18 150,500 0,563694 26 191,417 0,818471 

3 59,167 0,085987 11 132,583 0,340764 19 151,416 0,595541 27 195,250 0,850318 

4 68,667 0,117834 12 135,917 0,372611 20 159,083 0,627389 28 200,500 0,882166 

5 69,917 0,149682 13 137,667 0,404459 21 160,833 0,659236 29 201,333 0,914013 

6 74,917 0,181529 14 137,917 0,436306 22 163,083 0,691083 30 202,083 0,945860 

7 102,667 0,213376 15 145,250 0,468153 23 169,667 0,722930 31 308,340 0,977707 

8 104,500 0,245223 16 148,916 0,500000 24 173,916 0,754777    
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Table 3.20. Roller belt conveyor TB-2. Estimated values of the theoretical distribution 

parameters for time between failures, TBFi 
 

Distribution 
Parameter 

λ (t), h-1 m(t), h σ(t), h β(t) η(t), h γ(t), h 

Exponential negative, Ep 7,896·10-3      

Normal, Nv  141,519 56,505    

Weibull biparametric, Wp    2,391 161,799  

Weibull biparametric, Wv    2,355 154,278  

Weibull triparametric, Wm    2,701 201,020 – 39,494 

 
Table 3.21. Roller belt conveyor TB-2. Testing the theoretical distribution laws  

of time between failures 
 

Distribution, 

symbol 
Distribution function, F(t) 

K-S test, Dmax < Dcr = Dα, 49 

Maximum 

deviation, 
Dmax 

Risk, 

α, % 

Critical value, 

Dα, 19 

Va-

lida-

tion 

Exponential, Ep F(t) =1– e– λ t = 1– e– 7,896·10
– 3

 t              (3.15) 0,373916 0,5 Dα;31=0,303328 NOT 

Normal, Nv 

F(t) = 
1

2
+Φ (

t – m

σ
) = 

1

2
+Φ (

t – 141,519

56,505
)      (3.16) 

0,128254 

20 Dα;31=0,187316 

YES F(t) = NORMSDIST(
t – m

σ
)= 

= NORMSDIST(
t – 141,519

56,505
)          (3.17) 

0,5 Dα;31=0,303328 

Weibull 

biparametric, Wp F(t) =1– e
– (

t

η
)

β

= 1– e
– (

t

161,799
)

2,391

            (3.18) 0,153746 
20 Dα;31=0,187316 

YES 
0,5 Dα;31=0,303328 

Weibull 

biparametric, Wv F(t) =1– e
– (

t

η
)

β

= 1– e
– (

t

154,278
)

2,355

            (3.19) 0,194417 
10 Dα;31=0,214125 

YES 
0,5 Dα;31=0,303328 

Weibull 

triparametric, Wm F(t)=1– e
– (

t – γ

η
)

β

=1– e
– (

t + 39,494

201,020
)

2,701

         (3.20) 0,172736 
20 Dα;31=0,187316 

YES 
0,5 Dα;31=0,303328 

 

Table 3.22. Roller belt conveyor TB-2. Statistical series of repair times, TTRi, tri. 

Empirical distribution function �̂�(tri) 
 

i 
TTRi, tri, 

h 
M̂(tri) i 

TTRi, tri, 

h 
M̂(tri) i 

TTRi, tri, 

h 
M̂(tri) i 

TTRi, tri, 

h 
M̂(tri) 

1 0,500 0,022293 9 0,750 0,277070 17 1,083 0,531847 25 1,750 0,786624 

2 0,500 0,054140 10 0,750 0,308917 18 1,167 0,563694 26 1,750 0,818471 

3 0,583 0,085987 11 0,833 0,340764 19 1,250 0,595541 27 1,833 0,850318 

4 0,583 0,117834 12 0,833 0,372611 20 1,250 0,627389 28 2,000 0,882166 

5 0,667 0,149682 13 0,833 0,404459 21 1,250 0,659236 29 2,083 0,914013 

6 0,667 0,181529 14 0,917 0,436306 22 1,250 0,691083 30 4,167 0,945860 

7 0,667 0,213376 15 1,083 0,468153 23 1,417 0,722930 31 4,917 0,977707 

8 0,750 0,245223 16 1,083 0,500000 24 1,583 0,754777    

 
Table 3.23. Belt conveyor TB-2. Estimated values of the theoretical distribution parameters for 

repair times 
 

Distribution 

Parameter 

μ(tr), 

h-1 

m(tr), 

h 

σ(tr), 

h 

m(lgtr), 

h 

tmed(lgtr), 

h 
σ(lgtr) β(tr) 

η(tr), 

h 
β(tr) 

η(tr), 

h 
β(tr)r 

η(tr), 

h 

γ(tr), 

h 

Exponential, Ep 0,790             

Normal, Nv  1,314 0,976           
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Table 3.23. Belt conveyor TB-2. Estimated values of the theoretical distribution parameters for 

repair times 
 

Distribution 

Parameter 

μ(tr), 

h-1 

m(tr), 

h 

σ(tr), 

h 

m(lgtr), 

h 

tmed(lgtr), 

h 
σ(lgtr) β(tr) 

η(tr), 

h 
β(tr) 

η(tr), 

h 
β(tr)r 

η(tr), 

h 

γ(tr), 

h 

Lognormal, LNv    0,100 1,105 0,555        

Weibull 

biparametric, Wp 
      1,867 1,284      

Weibull 

biparametric, Wv 
        1,573 1,482    

Weibull 

triparametric, Wm 
          1,362 1,436 

–

1,73E-

12 

 

Table 3.24. Belt conveyor TB-2. Testing the theoretical distribution laws of repair times 
 

Distribution, 

symbol 
Distribution function, M(tr) 

K-S test, Dmax < Dcr = Dα, 31 

Maximum 

deviation, 

Dmax 

Risk, 

α, % 

Critical value, 

Dα, 19 

Va-

lida-

tion 

Exponential, Ep M(tr) =1– e– μ tr = 1– e– 0,790 tr               (3.21) 0,326176 0,5 Dα;31=0,303328 NOT 

Normal, Nv 

M(tr) = 
1

2
+Φ (

tr–m  

σ
) = 

1

2
+Φ (

 tr – 1,314  

0,976
)  (3.22) 

0,217425 

5 Dα;31=0,237884 

YES M(tr) = NORMSDIST(
tr – m

σ
)= 

= NORMSDIST(
tr – 1,314 

0,976
)               (3.23) 

0,5 Dα;31=0,303328 

Lognormal, LNv 

M(tr)=
1

2
+Φ (

ln tr–m  

σ
)=

1

2
+Φ (

ln tr – 0,100  

0,555
) (3.24) 

0,103029 

20 Dα;31=0,187316 

YES M(tr) = NORMSDIST(
1

σ
 ln 

tr

tmed
)= 

= NORMSDIST(
1

0,555
 ln 

tr

1,105
)         (3.25) 

0,5 Dα;31=0,303328 

Weibull 

biparametric, Wp M(tr) =1– e
– (

tr

η
)

β

= 1– e
– (

tr

1,284
)

1,867

          (3.26) 0,157795 
20 Dα;31=0,187316 

YES 
0,5 Dα;31=0,303328 

Weibull 

biparametric, Wv M(tr) =1– e
– (

tr

η
)

β

= 1– e
– (

tr

1,482
)

1,573

          (3.27) 0,165634 
20 Dα;31=0,187316 

YES 
0,5 Dα;31=0,303328 

Weibull 

triparametric, 

Wm 
M(tr) =1– e

– (
tr – γ

η
)

β

=1– e
– (

tr+1,73E-12

1,436
)

1,362

  (3.28) 0,211507 

10 Dα;31=0,214125 

YES 
0,5 Dα;31=0,303328 

 

Table 3.25. Belt conveyor TB-3. Statistical series of times between failures, TBFi, ti. Empirical 

distribution function F̂(ti) 
 

i 
TBFi, ti, 

h 
F̂(ti) i 

TBFi, ti, 

h 
F̂(ti) i 

TBFi, ti, 

h 
F̂(ti) i 

TBFi, ti, 

h 
F̂(ti) 

1 30,834 0,024648 8 136,000 0,271127 15 150,500 0,517606 22 195,250 0,764085 

2 40,583 0,059859 9 137,417 0,306338 16 162,750 0,552817 23 201,333 0,799296 

3 44,500 0,095070 10 137,667 0,341549 17 169,667 0,588028 24 202,083 0,834507 

4 68,667 0,130282 11 140,834 0,376761 18 173,750 0,623239 25 202,500 0,869718 

5 104,833 0,165493 12 142,250 0,411972 19 175,917 0,658451 26 209,833 0,904930 

6 123,750 0,200704 13 148,916 0,447183 20 176,083 0,693662 27 210,583 0,940141 

7 135,917 0,235915 14 150,333 0,482394 21 191,417 0,728873 28 237,917 0,975352 
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Table 3.26. Belt conveyor TB-3. Estimated values of the theoretical distribution parameters for 

time between failures TBFi 
 

Distribuția 
Parameter 

λ (t), h-1 m(t), h σ(t),h β(t) η(t), h γ(t), h 

Exponential negative, Ep 7,263·10-3      

Normal normalized, Nv  150,074 53,337    

Weibull biparametric, Wp    2,181 175,319  

Weibull biparametrică, Wv    2,438 159,828  

Weibull triparametrică, Wm    3,076 167,872 1,121E-06 

 

Table 3.27. Belt conveyor TB-3. Testing the theoretical distribution laws of time between 

failures 

 

Distribution, 

symbol 
Distribution function, F(t) 

K-S test, Dmax < Dcr = Dα, 28 

Maximum 

deviation, 

Dmax 

Risk, 

α, % 

Critical value, 

Dα, 19 

Va-

lida-

tion 

Exponential, Ep F(t) =1– e– λ t = 1– e– 7,263·10– 3 t           (3.29) 0,427435 0,5 Dα;28=0,318625 NOT 

Normal, Nv 

F(t) = 
1

2
+Φ (

t – m

σ
) = 

1

2
+Φ (

t – 150,074

53,337
)   (3.30) 

0,194633 

20 Dα;28=0,196798 

YES F(t) = NORMSDIST(
t – m

σ
)= 

= NORMSDIST(
t – 150,074

53,337
)           (3.31) 

0,5 Dα;28=0,318625 

Weibull 

biparametric, Wp F(t) =1– e
– (

t

η
)

β

= 1– e
– (

t

175,319
)

2,181

        (3.32) 0,236001 
5 Dα;28=0,249934 

YES 
0,5 Dα;28=0,318625 

Weibull 

biparametric, Wv F(t) =1– e
– (

t

η
)

β

= 1– e
– (

t

159,828
)

2,438

        (3.33) 0,289451 
1 Dα;28=0,299707 

YES 
0,5 Dα;28=0,318625 

Weibull 

triparametric, 

Wm 
F(t)=1– e

– (
t – γ

η
)

β

=1– e
– (

t –1,121E-06

167,872
)

3,076

   (3.34) 0,206150 

10 Dα;28=0,224974 

YES 
0,5 Dα;28=0,318625 

 

Table 3.28. Belt conveyor TB-3. Statistical series of repair times, TTRi, tri. Empirical distribution 

function �̂�(tri) 
 

i TTRi, tri, h M̂(tri) i TTRi, tri, h M̂(tri) i TTRi, tri, h M̂(tri) i TTRi, tri, h M̂(tri) 

1 0,417 0,024648 8 0,750 0,271127 15 1,250 0,517606 22 2,000 0,764085 

2 0,500 0,059859 9 0,750 0,306338 16 1,250 0,552817 23 2,083 0,799296 

3 0,500 0,095070 10 0,833 0,341549 17 1,250 0,588028 24 2,250 0,834507 

4 0,583 0,130282 11 0,833 0,376761 18 1,417 0,623239 25 3,167 0,869718 

5 0,667 0,165493 12 0,917 0,411972 19 1,583 0,658451 26 4,167 0,904930 

6 0,667 0,200704 13 1,083 0,447183 20 1,583 0,693662 27 4,250 0,940141 

7 0,667 0,235915 14 1,167 0,482394 21 1,750 0,728873 28 4,917 0,975352 

 

Table 3.29. Belt conveyor TB-3. Estimated values of the theoretical distribution parameters for 

repair times TTRi 

 

Distribution 

Parameter 

μ(tr), 

h-1 

m(tr), 

h 

σ(tr), 

h 

m(lgtr), 

h 

tmed(lgtr), 

h 
σ(lgtr) β(tr) 

η(tr), 

h 
β(tr) 

η(tr), 

h 
β(tr)r 

η(tr), 

h 

γ(tr), 

h 

Exponential, Ep 0,667             

Normal, Nv  1,545 1,205           
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Table 3.29. Belt conveyor TB-3. Estimated values of the theoretical distribution parameters for 

repair times TTRi 

 

Distribution 

Parameter 

μ(tr), 

h-1 

m(tr), 

h 

σ(tr), 

h 

m(lgtr), 

h 

tmed(lgtr), 

h 
σ(lgtr) β(tr) 

η(tr), 

h 
β(tr) 

η(tr), 

h 
β(tr)r 

η(tr), 

h 

γ(tr), 

h 

Lognormal, LNv    0,198 1,219 0,677        

Weibull 

biparametric, 

Wp 

      1,649 1,703      

Weibull 

biparametric, 

Wv 

        1,437 1,978    

Weibull 

triparametric, 

Wm 

          1,292 1,670 

–

5,035 

E-10 

 

Table 3.30. Belt conveyor TB-3. Testing the theoretical distribution laws of repair times 
 

Distribution, 

symbol 
Distribution function, M(tr) 

K-S test, Dmax < Dcr = Dα, 28 

Maximum 

deviation, 

Dmax 

Risk, 

α, % 

Critical value, 

Dα, 19 

Va-

lida-

tion 

Exponential, Ep M(tr) =1– e– μ tr = 1– e– 0,667 tr               (3.35) 0,259028 
2,5 Dα;28=0,272545 

YES 
0,5 Dα;28=0,318625 

Normal, Nv 

M(tr) = 
1

2
+Φ (

tr–m  

σ
) = 

1

2
+Φ (

 tr – 1,545  

1,205
)  (3.36) 

0,184591 

20 Dα;28=0,196798 

YES M(tr) = NORMSDIST(
tr – m

σ
)= 

= NORMSDIST(
tr –  1,545   

1,205
)                   (3.37) 

0,5 Dα;28=0,318625 

Lognormal, LNv 

M(tr)=
1

2
+Φ (

ln tr–m  

σ
)=

1

2
+Φ (

ln tr – 0,198  

0,667
) (3.38) 

0,095652 

20 Dα;28=0,196798 

YES M(tr) = NORMSDIST(
1

σ
 ln 

tr

tmed
)= 

= NORMSDIST(
1

0,677
 ln 

tr

1,219
)         (3.39) 

0,5 Dα;28=0,318625 

Weibull 

biparametric, Wp M(tr) =1– e
– (

tr

η
)

β

= 1– e
– (

tr

1,703
)

1,649

          (3.40) 0,136695 
20 Dα;28=0,196798 

YES 
0,5 Dα;28=0,318625 

Weibull 

biparametric, Wv M(tr) =1– e
– (

tr

η
)

β

= 1– e
– (

tr

1,978
)

1,437

          (3.41) 0,184247 
20 Dα;28=0,196798 

YES 
0,5 Dα;28=0,318625 

Weibull 

triparametric, 

Wm 
M(tr) =1– e

– (
tr – γ

η
)

β

=1– e
– (

tr+5,035E-10

1,670
)

1,292

(3.42) 0,165202 

20 Dα;28=0,196798 

YES 
0,5 Dα;28=0,318625 

 

Table 3.31. Belt conveyor TB-4. Statistical series of times between failures, TBFi, ti. Empirical 

distribution function F̂(ti) 
 

i 
TBFi, ti, 

h 
F̂(ti) i 

TBFi, ti, 

h 
F̂(ti) i 

TBFi, ti, 

h 
F̂(ti) i TBFi, ti, h F̂(ti) 

1 25,833 0,012411 15 54,833 0,260638 29 68,000 0,508865 43 93,083 0,757092 

2 31,000 0,030142 16 55,916 0,278369 30 69,416 0,526596 44 94,750 0,774823 

3 31,667 0,047872 17 56,000 0,296099 31 73,583 0,544326 45 95,000 0,792553 

4 32,750 0,065603 18 57,917 0,313830 32 73,667 0,562057 46 97,917 0,810284 
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Table 3.31. Belt conveyor TB-4. Statistical series of times between failures, TBFi, ti. Empirical 

distribution function F̂(ti) 
 

i 
TBFi, ti, 

h 
F̂(ti) i 

TBFi, ti, 

h 
F̂(ti) i 

TBFi, ti, 

h 
F̂(ti) i TBFi, ti, h F̂(ti) 

5 36,167 0,083333 19 58,667 0,331560 33 78,834 0,579787 47 109,250 0,828014 

6 36,833 0,101064 20 59,167 0,349291 34 80,166 0,597518 48 110,000 0,845745 

7 38,250 0,118794 21 62,750 0,367021 35 82,750 0,615248 49 110,250 0,863475 

8 38,667 0,136525 22 64,083 0,384752 36 82,750 0,632979 50 118,250 0,881206 

9 39,583 0,154255 23 65,000 0,402482 37 86,667 0,650709 51 119,167 0,898936 

10 43,250 0,171986 24 66,000 0,420213 38 87,417 0,668440 52 121,500 0,916667 

11 49,333 0,189716 25 66,167 0,437943 39 89,000 0,686170 53 122,500 0,934397 

12 50,833 0,207447 26 66,333 0,455674 40 89,000 0,703901 54 131,000 0,952128 

13 51,167 0,225177 27 67,500 0,473404 41 91,917 0,721631 55 133,500 0,969858 

14 53,167 0,242908 28 67,750 0,491135 42 92,500 0,739362 56 139,166 0,987589 

 

Table 3.32. Belt conveyor TB-4. Estimated values of the theoretical distribution parameters for 

time between failures TBFi 
 

Distribution 
Parameter 

λ (t), h-1 m(t), h σ(t),h β(t) η(t), h γ(t), h 

Exponential negative, Ep 1,545·10-2      

Normal normalized, Nv  74,421 29,094    

Weibull biparametric 

normalized, Wp 
   2,897 83,367  

Weibull biparametric 

normalized, Wv 
   2,984 84,833  

Weibull triparametric, Wm    2,766 83,616 6,013E-08 

 

Table 3.33. Belt conveyor TB-4. Testing the theoretical distribution laws of time between 

failures 
 

Distribution, 

symbol 
Distribution function, F(t) 

K-S test, Dmax < Dcr = Dα, 56 

Maximum 

deviation, 

Dmax 

Risk, 

α, % 

Critical value, 

Dα, 19 

Va-

lida-

tion 

Exponential, Ep F(t) =1– e– λ t = 1– e– 1,545·10– 2 t           (3.43) 0,368232 0,5 Dα;56=0,227425 NOT 

Normal, Nv 

F(t) = 
1

2
+Φ (

t – m

σ
) = 

1

2
+Φ (

t – 74,421

29,094
)    (3.44) 

0,096204 

20 Dα;56=0,140398 

YES F(t) = NORMSDIST(
t – m

σ
)= 

= NORMSDIST(
t – 74,421

29,094
)            (3.45) 

0,5 Dα;56=0,227425 

Weibull 

biparametric, Wp F(t) =1– e
– (

t

η
)

β

= 1– e
– (

t

83,367
)

2,897

        (3.46) 0,083422 
20 Dα;56=0,140398 

YES 
0,5 Dα;56=0,227425 

Weibull 

biparametric, Wv F(t) =1– e
– (

t

η
)

β

= 1– e
– (

t

84,833
)

2,984

         (3.47) 0,105281 
20 Dα;56=0,140398 

YES 
0,5 Dα;56=0,227425 

Weibull 

triparametric, 

Wm 
F(t)=1– e

– (
t – γ

η
)

β

=1– e
– (

t –1,121E-06

83,616
)

2,766

   (3.48) 0,077472 

20 Dα;56=0,140398 

YES 
0,5 Dα;56=0,227425 

 



28 

 

Table 3.34. Roller belt conveyor TB-4. Statistical series of repair times, TTRi, tri. Empirical 

distribution function �̂�(tri) 
 

i 
TTRi, tri, 

h 
M̂(tri) i 

TTRi, tri, 

h 
M̂(tri) i 

TTRi, tri, 

h 
M̂(tri) i 

TTRi, tri, 

h 
M̂(tri) 

1 0,417 0,012411 15 0,833 0,260638 29 1,250 0,508865 43 1,833 0,757092 

2 0,500 0,030142 16 0,833 0,278369 30 1,250 0,526596 44 2,000 0,774823 

3 0,500 0,047872 17 0,917 0,296099 31 1,250 0,544326 45 2,083 0,792553 

4 0,500 0,065603 18 0,917 0,313830 32 1,250 0,562057 46 2,250 0,810284 

5 0,500 0,083333 19 0,917 0,331560 33 1,250 0,579787 47 2,333 0,828014 

6 0,500 0,101064 20 0,917 0,349291 34 1,250 0,597518 48 2,500 0,845745 

7 0,583 0,118794 21 1,000 0,367021 35 1,333 0,615248 49 3,083 0,863475 

8 0,667 0,136525 22 1,000 0,384752 36 1,333 0,632979 50 3,583 0,881206 

9 0,667 0,154255 23 1,083 0,402482 37 1,417 0,650709 51 3,667 0,898936 

10 0,667 0,171986 24 1,083 0,420213 38 1,417 0,668440 52 4,083 0,916667 

11 0,750 0,189716 25 1,083 0,437943 39 1,500 0,686170 53 4,250 0,934397 

12 0,750 0,207447 26 1,083 0,455674 40 1,667 0,703901 54 4,500 0,952128 

13 0,750 0,225177 27 1,250 0,473404 41 1,750 0,721631 55 6,667 0,969858 

14 0,833 0,242908 28 1,250 0,491135 42 1,833 0,739362 56 12,000 0,987589 

 

Table 3.35. Roller belt conveyor TB-4. Estimated values of the theoretical distribution 

parameters for repair times TTRi 

 

Distribuția 

Parameter 

μ(tr), 

h-1 

m(tr), 

h 

σ(tr), 

h 

m(lgtr), 

h 

tmed(lgtr), 

h 
σ(lgtr) β(tr) 

η(tr), 

h 
β(tr) 

η(tr), 

h 
β(tr)r 

η(tr), 

h 

γ(tr), 

h 

Exponential, Ep 0,515             

Normal, Nv  1,738 1,844           

Lognormal, LNv    0,262 1,299 0,697        

Weibull 

biparametric, 

Wp 

      1,595 1,848      

Weibull 

biparametric, 

Wv 

        1,226 1,883    

Weibull 

triparametric, 

Wm 

          0,943 1,692 
5,87 

E-09 

 

Table 3.36. Belt conveyor TB-4. Testing the theoretical distribution laws of repair times 
 

Distribution, 

symbol 
Distribution function, M(tr) 

K-S test, Dmax<Dcr=Dα, 56 

Maximum 

deviation, 

Dmax 

Risk, 

α, % 

Critical value, 

Dα, 19 

Va-

lida-

tion 

Exponential, 

Ep 
M(tr) =1– e– μ tr = 1– e– 0,515 tr               (3.49) 0,214684 0,5 Dα;56=0,227425 YES 

Normal, Nv 

M(tr) = 
1

2
+Φ (

tr–m  

σ
) = 

1

2
+Φ (

 tr – 1,738  

1,844
)  (3.50) 

0,238531 0,5 Dα;56=0,227425 NOT M(tr) = NORMSDIST(
tr – m

σ
)= 

= NORMSDIST(
tr –  1,738   

1,844
)                   (3.51) 
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Table 3.36. Belt conveyor TB-4. Testing the theoretical distribution laws of repair times 
 

Distribution, 

symbol 
Distribution function, M(tr) 

K-S test, Dmax<Dcr=Dα, 56 

Maximum 

deviation, 

Dmax 

Risk, 

α, % 

Critical value, 

Dα, 19 

Va-

lida-

tion 

Lognormal, 

LNv 

M(tr)=
1

2
+Φ (

ln tr–m  

σ
)=

1

2
+Φ (

ln tr – 0,262  

0,697
) (3.52) 

0,119561 

20 Dα;56=0,140398 

YES M(tr) = NORMSDIST(
1

σ
 ln 

tr

tmed
)= 

= NORMSDIST(
1

0,697
 ln 

tr

1,299
)      (3.53) 

0,5 Dα;56=0,227425 

Weibull 

biparametric, 

Wp 

M(tr) =1– e
– (

tr

η
)

β

= 1– e
– (

tr

1,848
)

1,595

          (3.54) 0,188113 

2,5 Dα;56=0,194387 

YES 
0,5 Dα;56=0,227425 

Weibull 

biparametric, 

Wv 

M(tr) =1– e
– (

tr

η
)

β

= 1– e
– (

tr

1,883
)

1,226

          (3.55) 0,166366 

5 Dα;56=0,176694 

YES 
0,5 Dα;56=0,227425 

Weibull 

triparametric, 

Wm 
M(tr) =1– e

– (
tr – γ

η
)

β

=1– e
– (

tr–5,87E-09

1,692
)

0,943

  (3.56) 0,258976 0,5 Dα;56=0,227425 NOT 

 

CHAPTER IV  STUDY OF AVAILABILITY OF ROLLER CONVEYOR 

                          BELT SYSTEMS 
 

The final objective of this chapter is evaluation of the operational availability of transport systems 

made up of four roller belt conveyers mounted in series. 

Operational availability is proved during exploitation and is quantified based on operational 

reliability and maintainability. Availability is given by the sum of two probabilities, the probability of 

functioning without failure, R(t), and the probability of repair, expressed by maintainability function 

M(tr). Availability of a technical system can be expressed by KA availability coefficient, also called 

ration of active time or intrinsic availability. 

It represents the probability for a system to function adequately in any moment, during effective 

functioning and repair, in specified conditions. Intrinsic availability thus excludes times in which the 

system halts, although it is capable of functioning, called free times, as well as preventive maintenance 

times, those intended for logistic, administrative and depositing actions. The indicator is defined by the 

equation 
 

KA = 
MTBF

MTBF+MTTR
 .                                                                     (4.3) 

 

Reliability evaluation for roller belt conveyers 

Optimization criteria used for to adopt distribution are dispersion and distance between empirical 

and theoretical distributions. Those distributions are adopted for which dispersion and distance has the 

least values. The tables presented synthesize the principal reliability indicators for the four roller belt 

conveyers. For each conveyer the distribution characterizing the best its functionality is adopted.  

 

Table 4.4. Quantitative indicators of reliability for belt conveyor TB-1. 

Weibull triparametric distribution Wm 
 

No. 
Name and symbol of the 

indicator 
Relationship  

Value, 

Unit 

1 Reliability function, R(t) R(t) = e
– (

t – γ

η
)

β

 = e
– (

t – 4,278E-9

94,598
)

3,553

                                      (4.25) Fig. 4.1 
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Table 4.4. Quantitative indicators of reliability for belt conveyor TB-1. 

Weibull triparametric distribution Wm 
 

No. 
Name and symbol of the 

indicator 
Relationship  

Value, 

Unit 

2 
Failure probability function, 

f (t) 

 f(t) = 
β

η
(

t – γ

η
)

 β –1

e
– (

t – γ

η
)

β

= 

= 
3,553

94,598
 (

t – 4,278E–09

94,598
)

2,553

e
– (

t – 4,278E-09

94,598
)

3,553

                  (4.26) 

Fig. 4.2 

3 Failure rate function, z(t) z(t) = 
β

η
(

t –γ

η
)

 β –1

= 
3,553

94,598

 (
t – 4,278E–09

94,598
)

2,553

                         (4.27) Fig. 4.3 

4 
Mean time between failures, 

MTBF, E(t) 
E(t)= γ+ η Γ (

1

β
+1)= 4,278∙10–9+94,598 Γ (

1

3,553
+1)      (4.28) 85 h 

5 
Median operating time, t0,5, 

tmed 
t0,5= γ+ η √–ln 0,5

β
 = 4,278∙10–9+94,598 √–ln 0,5

3,553
     (4.29) 85 h 

6 
Dispersion of operating 

time, D 

D = η2 {Γ (
2

β
+1) – [Γ (

1

β
+1)]

2

} =  

= 94,5982 {Γ (
2

3,553
+1) – [Γ (

1

3,553
+1)]

2

}                    (4.30) 

707 h2 

 

Table 4.5. Quantitative indicators of reliability for belt conveyor TB-2.  

Normal normalized distribution Nv 
 

No. Name and symbol of the indicator Relationship  
Value, 

Unit 

1 Reliability function, R(t) 
R(t)= 

1

2
– Φ (

t – m

σ
) = 1–NORMSDIST(

t – m

σ
) =  

=1– NORMSDIST(
t – 141,519

56,505
)              (4.31) 

Fig. 4.4 

2 Failure probability function, f (t) f(t)=
1

σ √2π
e

– 
1

2
(

t – m

σ
)

2

=
1

56,505 √2π
e

– 
1

2
(

t – 141,519

56,505
)

2

(4.32) Fig. 4.5 

3 Failure rate function, z(t) z(t) = 
f (t)

R(t)
 = 

1

56,505 √2π
 e

– 
1
2

(
t –141,519

56,505
)
2

1– NORMSDIST(
t – 141,519

56,505
)
            (4.33) Fig. 4.6 

4 Mean time between failures, MTBF, E(t) MTBF = m = 141,519                              (4.34) 142 h 

5 Median operating time, t0,5, tmed t0,5 = tmed = m = 141,519                           (4.35) 142 h 

6 Dispersion of operating time, D D = σ2 = 56,5052                                           (4.36) 3193 h2 

 

Table 4.12. Quantitative indicators of reliability for belt conveyor TB-3. 

Weibull triparametric distribution Wm 
 

No. 
Name and symbol of the 

indicator 
Relationship  

Value, 

Unit 

1 Reliability function, R(t) 
R(t) = e

– (
t – γ

η
)

β

 = e
– (

t –1,121E–06

167,872
)

3,076

                               (4.73) 
Fig. 4.7 

2 
Failure probability 

function, f (t) 

 f(t) = 
β

η
(

t – γ

η
)

 β –1

e
– (

t – γ

η
)

β

= 

= 
3,076

167,872
 (

t–1,121E–06

167,872
)

2,076

e
– (

t–1,121E–06

167,872
)

3,076

          (4.74) 

Fig. 4.8 

3 Failure rate function, z(t) z(t) = 
β

η
(

t –γ

η
)

 β –1

= 
3,076

167,872

 (
 t – 1,121E–06

167,872
)

2,076

               (4.75) Fig. 4.9 

4 
Mean time between failures, 

MTBF, E(t) 
E(t)=γ+η Γ (

1

β
+1)=1,121E–6+167,872∙Γ (

1

3,076
+1)     (4.76) 150 h 
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Table 4.12. Quantitative indicators of reliability for belt conveyor TB-3. 

Weibull triparametric distribution Wm 
 

No. 
Name and symbol of the 

indicator 
Relationship  

Value, 

Unit 

5 
Median operating time, t0,5, 

tmed 
t0,5= γ+ η √–ln 0,5

β
=1,121E–6+167,872 √–ln 0,5

3,076
    (4.77) 141 h 

6 
Dispersion of operating 

time, D 

D = η2 {Γ (
2

β
+1) – [Γ (

1

β
+1)]

2

} =  

=167,8722 {Γ (
2

3,076
+1) – [Γ (

1

3,076
+1)]

2

}                  (4.78 

2845 h2 

 

Table 4.15. Quantitative indicators of reliability for belt conveyor TB-4. 

Weibull biparametric normalized distribution Wv 
 

No. Name and symbol of the indicator Relationship  Value, U 

1 Reliability function, R(t) R(t) = e
– (

t

η
)

β

 = e
– (

t

84,833
)

2,984

                    (4.91) 
Fig. 

4.10 

2 Failure probability function, f (t) 
 f(t)= 

β

η
(

t

η
)

 β –1

e
– (

t

η
)

β

= 

= 
2,984

84,833
 (

t

84,833
)

1,984

e
– (

t

84,833
)

2,984

       (4.92) 

Fig. 

4.11 

3 Failure rate function, z(t) z(t)= 
β

η
(

t

η
)

 β –1

= 
2,984

 84,833

 (
t

84,833
)

1,984

          (4.93) 
Fig. 

4.12 

4 Mean time between failures, MTBF, E(t) E(t) = η Γ (
1

β
+1) =84,833 Γ (

1

2,984
+1)   (4.94) 76 h 

5 Median operating time, t0,5, tmed t0,5 = η √–ln 0,5
β

 = 84,833∙ √–ln 0,5
2,984

   (4.95) 75 h 

6 Dispersion of operating time, D 

D = η2 {Γ (
2

β
+1) – [Γ (

1

β
+1)]

2

} =  

=84,8332 {Γ (
2

2,984
+1) – [Γ (

1

2,984
+1)]

2

}   (4.96) 
765 h2 

 

Reliability function, Figs. 4.13 and 4.14, of the system made up of the four conveyers arranged 

in series is 
 

RS(t) = e
– (

t – 4,278E-9

94,598
)

3,553

∙ ∫
1

56,505 √2π
 e

–
1

2
 (

t – 141,519

56,505
)

2

dt
∞

t
  ∙ e

– (
t –1,121E–06

167,872
)

3,076

 ∙ e
– (

t

84,833
)

2,984

.       (4.108) 
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Fig. 4.13. Transport system reliability function 
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Evaluation of the transport system maintainability 

Optimization criteria used to adopt distributions are dispersion and distance between empirical 

and theoretical distributions. Those distributions are adopted for which dispersion and distance has the 

least values. The tables in this chapter synthesize the principal indicators of maintainability 

characterizing the conveyers’ functionality. 

 

Table 4.18. Quantitative indicators of maintainability for belt conveyor TB-1.  

Lognormal normalized distribution LNv 
 

No. Name and symbol of the indicator Relationship  
Value, 

Unit 

1 Maintainability function, M(tr) 
M(tr) = 

1

2
+Φ (

ln tr–m  

σ
)=NORMSDIST(

1

σ 
ln

tr

trmed
)=  

= NORMSDIST(
1

0,499
 ln 

tr

1,457
)                    (4.120) 

Fig. 

4.15 

2 Repair probability function, f (tr) f(tr) =  
1

tr
 

1

 σ √2π
e

– 
1

2
(

ln tr – m

σ
)

2

= 
1

tr
 

1

 0,499 √2π
 e

– 
1

2
(

ln tr – 0,376

0,499
)

2

  

(4.121) 

Fig. 

4.16 

3 Repair rate function, z(tr) z(tr) = 
f (tr)

1–M(tr)
 = 

1

tr
 

1

 0,499 √2π
 e

– 
1
2

(
ln tr – 0,376

0,499
)
2

1– NORMSDIST(
1

0,499
 ln 

tr

1,457
)
                (4.122) 

Fig. 

4.17 

4 Mean time to repair, MTTR, E(tr) MTTR = E(tr) = e
 m + 

σ2

2  = e
0,376 + 

0,499
2

2                    (4.123) 1,650 h 

5 Median time to repair, tr0,5, trmed tr0,5 = trmed = em = e 0,376                                       (4.124) 1,457 h 

6 
Maximum corrective maintenance 

time for P=90%, trmax;0,90 
trmax;0,90 = e m + 1,29σ= e 0,376 + 1,29∙0,499                   (4.125) 2,772 h 

7 
Maximum corrective maintenance 

time for 95%, trmax;0,95 
trmax;0,95 = e m + 1,64σ= e 0,376 + 1,64∙0,499                   (4.126) 3,301 h 

8 Repair time dispersion, D D=(eσ2
–1) e2m+σ2

=(e0,499
2

–1)  e2∙0,376+0,499
2

        (4.127) 0,769 h2 

 

Table 4.23. Quantitative indicators of maintainability for belt conveyor TB-2.  
Lognormal normalized distribution LNv 

 

No. Name and symbol of the indicator Relationship  
Value, 

Unit 

1 Maintainability function, M(tr) 
M(tr) = 

1

2
+Φ (

ln tr–m  

σ
)=NORMSDIST(

1

σ 
ln

tr

trmed
)=  

= NORMSDIST(
1

0,555
 ln 

tr

1,105
)            (4.160) 

Fig. 

4.18 
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Table 4.23. Quantitative indicators of maintainability for belt conveyor TB-2.  
Lognormal normalized distribution LNv 

 

No. Name and symbol of the indicator Relationship  
Value, 

Unit 

2 Repair probability function, f (tr) 
f(tr) =  

1

tr
 

1

 σ √2π
e

– 
1

2
(

ln tr – m

σ
)

2

= 

= 
1

tr
 

1

 0,555 √2π
 e

– 
1

2
(

ln tr – 0,100

0,555
)

2

                         (4.161) 

Fig. 

4.19 

3 Repair rate function, z(tr) 
z(tr) = 

f (tr)

1–M(tr)
 = 

1

tr
 

1

 0,555 √2π
 e

– 
1
2

(
ln tr – 0,100

0,555
)
2

1– NORMSDIST(
1

0,555
 ln 

tr

1,105
)
         (4.162) 

Fig. 

4.20 

4 Mean time to repair, MTTR, E(tr) MTTR = E(tr) = e
 m + 

σ2

2  = e
0,100 + 

0,5552

2                (4.163) 1,289 h 

5 Median time to repair, tr0,5, trmed tr0,5 = trmed = em = e 0,100                                   (4.164) 1,105 h 

6 
Maximum corrective maintenance 

time for P=90%, trmax;0,90 
trmax;0,90 = e m + 1,29σ= e 0,100 + 1,29∙0,555               (4.165) 2,261 h 

7 
Maximum corrective maintenance 

time for 95%, trmax;0,95 
trmax;0,95 = e m + 1,64σ= e 0,100 + 1,64∙0,555               (4.166) 2,746 h 

8 Repair time dispersion, D D=(eσ2
–1)  e2m+σ2

=(e0,5552

–1)  e2∙0,100+0,5552

   (4.167) 0,600 h2 

 

Table 4.30. Quantitative indicators of maintainability for belt conveyor TB-3. 

Weibull biparametric normalized distribution Wp 
 

No. Name and symbol of the indicator Relationship  
Value, 

Unit 

1 Maintainability function, M(tr) M(tr) =1– e
– (

tr

η
)

β

 = 1– e
– (

tr

1,703
)

1,649

           (4.215) 
Fig. 

4.21 

2 Repair probability function, f (tr) 
 f(tr) = 

β

η
(

tr

η
)

 β –1

e
– (

tr

η
)

β

= 

= 
1,649

1,703
 (

tr

1,703
)

0,649

e
– (

tr

1,703
)

1,649

            (4.216) 

Fig. 

4.22 

3 Repair rate function, z(tr) z(tr) = 
β

η
(

tr

η
)

 β –1

= 
1,649

1,703
 (

tr

1,703
)

0,649

             (4.217) 
Fig. 

4.23 

4 Mean time to repair, MTTR, E(tr) MTTR = η Γ (
1

β
+1)= 1,703 Γ (

1

1,649
+1)   (4.218) 1,523 h 

5 Median time to repair, tr0,5, trmed tr0,5= η √–ln 0,5
β

 = 1,703∙ √–ln 0,5
1,649

       (4.219) 1,364 h 

6 
Maximum corrective maintenance time 

for P=90%, trmax;0,90 
trmax;0,90 = η √–ln 0,1

β
 = 1,703∙ √–ln 0,1

1,649
(4.220) 2,824 h 

7 
Maximum corrective maintenance time 

for 95%, trmax;0,95 
trmax;0,95 = η √–ln 0,05

β
 = 1,703∙ √–ln 0,05

1,649
   

     (4.221) 
3,313 h 

8 Repair time dispersion, D 
D = η2 {Γ (

2

β
+1) – [Γ (

1

β
+1)]

2

} =  

=1,7032 {Γ (
2

1,649
+1) – [Γ (

1

1,649
+1)]

2

}  (4.222) 

0,899 

h2 

 

Table 4.35. Quantitative indicators of maintainability for belt conveyor TB-4. 

Weibull biparametric normalized distribution Wp 
 

No. Name and symbol of the indicator Relationship  Value, U 

1 Maintainability function, M(tr) M(tr) =1– e
– (

tr

η
)

β

 = 1– e
– (

tr

1,848
)

1,595

                  (4.254) Fig. 4.24 
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Table 4.35. Quantitative indicators of maintainability for belt conveyor TB-4. 

Weibull biparametric normalized distribution Wp 
 

No. Name and symbol of the indicator Relationship  Value, U 

2 Repair probability function, f (tr)  f(tr) = 
β

η
(

tr

η
)

 β –1

e
– (

tr

η
)

β

= 
1,595

1,848
 (

tr

1,848
)

0,595

e
– (

tr

1,848
)

1,595

  

           (4.255) 

Fig. 4.25 

3 Repair rate function, z(tr) z(tr) = 
β

η
(

tr

η
)

 β –1

= 
1,595

1,848
 (

tr

1,848
)

0,595

                   (4.256) Fig. 4.26 

4 Mean time to repair, MTTR, E(tr) MTTR = η Γ (
1

β
+1)= 1,848 Γ (

1

1,595
+1)          (4.257) 1,657 h 

5 Median time to repair, tr0,5, trmed tr0,5= η √–ln 0,5
β

 = 1,848∙ √–ln 0,5
1,595

             (4.258) 1,469 h 

6 
Maximum corrective maintenance 

time for P=90%, trmax;0,90 
trmax;0,90 = η √–ln 0,1

β
 = 1,848∙ √–ln 0,1

1,595
      (4.259) 3,117 h 

7 
Maximum corrective maintenance 

time for 95%, trmax;0,95 
trmax;0,95 = η √–ln 0,05

β
 = 1,848∙ √–ln 0,05

1,595
  (4.260) 3,677 h 

8 Repair time dispersion, D 
D = η2 {Γ (

2

β
+1) – [Γ (

1

β
+1)]

2

} =  

=1,8482 {Γ (
2

1,595
+1) – [Γ (

1

1,595
+1)]

2

}       (4.261) 

1,131 h2 

 

Evaluation of the availability of transport system 

For a component subsystem of the system, the indicator is expressed by the equation 
 

Ai(t)=KAi =
MTBFi

MTBFi+MTTRi
 ,                (4.270) 

 

where i means TB-1, TB-2, TB-3 or TB-4.  

In this equation, MTBFi represents the average good functioning times (times between failures), 

and MTTRi the average time related to repairs. 

Unavailability, Ui(t), defined by the equation 
 

Ui(t) =1–Ai(t),                 (4.271) 
 

expresses the time ratio where the system cannot be used.  

For the system series made up of the four conveyers, availability is 
 

AS(t) = ∏ Ai
4
i =1 (t) = ATB-1(t) ∙ ATB-2(t) ∙ ATB-3(t) ∙ ATB-4(t)            (4.272) 

 

Table 4.37. Availability evaluation of roller belt conveyors and transport system 
 

No. Conveyor 

Number 

failures, 

 n 

MTBFi MTTRi Ai(t), 
 

MTBFi

MTBFi+MTTRi

 

Ui(t), 
 

Ui(t)=1–Ai(t), 

hours/year; days/year 

Value, 

 h 
Distribution/ 
Relationship 

Value, 

 h 
Distribution/ 
Relationship 

1 Conveyor TB-1 49 85,183 Wm/(4.28) 1,650 LNv/(4.123) 0,980998 166; 6,93 

2 Conveyor TB-2 31 141,519 Nv/(4.34) 1,289 LNv/(4.163) 0,990974 79; 3,29 

3 Conveyor TB-3 28 150,075 Wm/(4.76) 1,523 Wp/(4.218) 0,989954 88; 3,67 

4 Conveyor TB-4 56 75,736 Wv/(4.94) 1,657 Wp/(4.257) 0,978590 188; 7,81 

5 Transport system: AS(t) = 0,941773; US(t) = 510 hours/year; US(t) = 21 days/year 

 

In another variant, the system availability can be calculated knowing the system’s reliability 

function, RS(t). In this case, availability AS(t) of the system results from the equation 
 

AS(t) = 
MTBFS

MTBFS+MTTRS
 .                (4.273) 
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In this equation, MTBFS represents the average good functioning time for the system, and MTTRS 

the average of the repair of the system. 

MTBFS indicator results from the equation 
 

MTBFS = ∫ R𝑆(t) dt
∞

0
  = 

 

= ∫ [e
– (

t – 4,278E-9

94,598
)

3,553

∙ ∫
1

56,505 √2π
 e

– 
1

2
 (

t – 141,519

56,505
)

2

dt
∞

t
∙e

– (
t –1,121E–06

167,872
)

3,076

∙ e
– (

t

84,833
)

2,984

]
∞

0
dt    (4.274) 

 

Solving with Mathcad software the integral leads to the parameter value for the system, MTBFS= 

= 60,436 hours. 

In order to determine MTTRS parameter, the unit made up of the four conveyers as a single 

product characterized by the 164 failures is considered. 

The statistic series with 164 terms is made up of repair times tri, in hours: 0,500; 0,583; 0,667; 

0,667; 0,667; 0,750; 0,7500; 0,833; 0,833; 0,917; 1,083; 1,167; 1,250; 1,250; 1,250; 1,417; 1,583; 

1,583; 1,750; 2,000; 2,083; 2,250; 3,167; 4,167; 4,250; 4,917; 0,417; 0,500; 0,500, 0,500; 0,500; 0,500; 

0,583; 0,667; 0,667; 0,667; 0,750; 0,750; 0,750; 0,833; 0,833; 0,833; 0,917; 0,917; 0,917; 0,917; 1,000; 

1,000; 1,083; 1,083; 1,083; 1,083; 1,250; 1,250; 1,250; 1,250; 1,250; 1,250; 1,250; 1,250; 1,333; 1,333; 

1,417; 1,417; 1,500; 1,667; 1,750; 1,833; 1,833; 2,000; 2,083; 2,250; 2,333; 2,500; 3,083; 3,583; 3,667; 

4,083; 4,250; 4,500; 6,667; 12,000. 
Statistic processing of the series shows that repair times of the entire system follow a lognormal 

distribution law, defined by the following parameters: 

- average, m(lg tr) = AVERAGE ln(tri) (1:164) = 0,254417 h; 

- median, tmed (lg tr) = em(lg tr)=1,289710 h; 

- shape parameter, σ(lg tr) = STDEV ln (tri) (1:164) = 0,615947 

- distribution function, M(tri) = NORMSDIST ln (
tri

trmed
) 

1

𝜎
  . 

With these values, MTTRS parameter is  

MTTRS = E(tr)S = e
 m + 

σ2

2  = e
0,254417 + 

0,6159472

2  = 1,559 h. 

This value of the repair time average for the system is not realistic, in reality it being much higher. 

For a 95% certainty level, 

MTTRS = trmax;0,95 = e m + 1,64σ= e 0,254417 + 1,64∙0,615947=3,541 h. 

With the average value of functioning and repair times AS(t)availability of the system is  

AS(t) = 
MTBFS

MTBFS+MTTRS
 = 

60,436

60,436+3,541
 = 0,944652 = 94,4652%. 

Reported to one year, US(t) = 485 hours, respectively US(t) = 20 days of unavailability result.  
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